Y E Y M ™ an
SEURCHNE

Documentation

BACKEND:

The backend comprises of three parts: KMeans Clustering Engine, Server serving the machine
learning model and a Search Engine. The technology stack utilized for the development of back-
end is: Python, Node Js/Express Js (Javascript).

As of late Python has been the choice for machine learning, data scientists and scientific
computing community as it offers a wide array of libraries to carry out complex computations.
It offers many great bindings for the purpose of developing models utilizing Clustering,
Classification and other machine learning techniques. It is great for prototyping machine
learning and natural language processing models fast and allows its users to concentrate on
core areas of business processes and development of functionalities.

Python has a syntax which is closest to a readable pseudocode. Apart from the syntactical sugar
that it offers, it is very much geared towards math and you get most of the libraries inclined
towards mathematics and scientific computation by default. Since, we required a machine
learning model, which essentially is a mathematical optimization only, makes Python an
obvious choice here. Python also has to offer state of the art libraries for Numerical linear
algebra (numpy), matrix algebra (numpy), Convex optimization, Statistical modeling, Natural
language processing (Natural language toolkit) and Machine learning (Scikit-learn, Tensorflow)
in general.

We incorporated the use of data frames, mathematical calculations, tokenization, stemming
and machine learning functions. As we didn’t have predefined class labels and we wanted to
find out what people were talking from the document we did resort to unsupervised learning
and used simple K-means clustering to find what the documents were talking about. With the
help of clustering we are able to show most talked about topics in the RIT community. To speed
up the process the model has been persisted by pickling it and deployed by utilizing client-
server architecture and remote procedure calls (RPC), this makes the system distributed and
lets us segregate the logic for machine learning and clients utilizing this model, giving rise to
Service Oriented Architecture (SOA). The Sever serving the machine learning model is acting as
an intermediate between the Client App developed using Node JS/Express JS and persisted
machine learning model.

The search engine is implemented in the lines of OKAPI BM25 which calculates the relevance
score using this:

£(gi, D) - (k1 +1)
f(Q£aD)+k1- (1_b+b |D|)

score(D, Q) = Zn: IDF(g;) -
i=1

avgdl
Image reference: https://en.wikipedia.org/wiki/Okapi BM25

Where fla:, D) is the term frequency for 9 in the document D and |D| is length of the
document which is counted from the number of words it has. AVGDL is average document
length which is total length of all documents in words divided by number of documents. K1 and
b are constants.

The Inverse document frequency here is calculated as:

N —n(g;) +0.5
IDF(q;) = log ()
n(g;) + 0.5

Image reference: https://en.wikipedia.org/wiki/Okapi BM25

Where N is the number of documents in a particular collection and the n(qi) is number of
documents containing qi.

After calculating the relevance score for documents containing query terms, the document is
pushed into a resulting array which is sorted in descending order of relevance at the client side.

https://en.wikipedia.org/wiki/Okapi_BM25
https://en.wikipedia.org/wiki/Okapi_BM25

DATA:

The data obtained for the purpose of this application was extracted from the RIT Reddit
discussion board(https://www.reddit.com/r/rit/). Each of the thread title and its corresponding
description forms a single document for this application. One thousand such documents were
scraped using a web browser automation tool selenium. The scraped data is stored in a tab
delimited csv file so that it can be loaded into the backend system to perform natural language
processing as well as clustering.

Visit reddit RIT page
1000 pages not covered 7

currentlrl = curren'LF'age Link

X

tcan all the tites on the page

L]

Store the tithes im an array

Y

Get all the links of titles

Y

Store links in an array

Iterate over links array

False

Gaota the currentUrd

v

Get link of next button Goto Link

¥

Scan Description

Click next button

Push it in array Push empty string

FIG: Flow diagram of data scraping

BUSINESS LOGIC:

The architecture is divided into client and server. The client here is the front-facing web
application developed in Node Js and the server is Python code which runs the persisted
machine learning model. The Python server serving the front-facing web application is binded
on a port in a particular hostname. The client app when instantiates first calls that Python
server using RPC. The server when gets the request, returns the generated machine learning
model to the client that is web-app which displays the top terms at the front-end. The entire
business logic can be viewed here under:

User Searches query

{ I Returns result set to view as documents W 1
Ranks Documents and soris

Gives data to search engine in descending order of score
Client Facing App - Nodea 1S3 Wb * Search Engine

" Renders view Serving
(View) and (Client] (Processes Reqguest)

displays top terms i ‘[

Document
Result Set

h J
Indexes the data
does calculations for
the score based on
BM25

lanas sisanbay

Receives msgpack of
the binary buffer over TCP/IP and Unpacks it

h 4

RPC Server Invokes the persisted models, turns into a msgpack
Binded over TCP/IP [
protocol

Simple K-Means Dumps Generated Model as Pickle Generated ML

Machine Learning » Pickle Dumps
Model

FIG: Business logic of community information engine

The way this search engine works is, whenever a user types a query in the search box, the client
application passes the request to the searcher class. When the request is received at the search
engine, it calculates the relevance score of the document for the query terms and ranks them in
descending order of their relevance score. This algorithm can implement the concept of single,
bi-word and phrase query searches.

USER INTERFACE:

The front end of the application was developed using HTML, CSS, Javascript/JQuery and grid
framework (twitter bootstrap). The main page of our GUI has a search box and a section

displaying the most talked about terms at RIT.

The font size and the color of each term at the most talked about section dynamically vary as
per their frequency of occurrence in the underlying documents. The words having the highest
frequency appear big and bold in size compared to the rest and so on. Our Ul also has an

embedded RIT video, thereby enhancing the user experience of our application.

Whenever a term is searched for, the user is directed to a different page displaying all the
relevant result one below the other in an array format. The screenshots of our Ul and search

results is as follows:

Tigers are talking about

senool attend bedroom w« research august dse
s summer Fit wifi laundry .. sctivism .

vt SAU QUANTIY ted e o =ee EVENE traffic stop

e making e nn c8 StUAENES €XCitEd wiams

DIOBS BN srwam womwes e wse w Oovoes MAC idea thinking

FIG: Entry page of the website

o _‘;..l' E.J.JI}J About Team Technology
SECREHINE

restaurants

Chinese Food

In your apinion, what's the best Chiness restaurant arsund RIT?

PRl am

FIG: Search results

PACKAGE AND FILE INFORMATION:

Community Information Engine

A J

Generated Models For Node Structure
Persistance

v

h
Dependancies
- N 1. node_modules
1. links-p.pkl 2 T
By . public
2 terms-p.pkl ¢
s . 1. assets
3 titles-p.pkl .
X X 1. images
4, description-
p.pkl 1. Loego.png
= . 2. video.mpd
Chromedriver 3. video.webm
latestdata.c 2 css
1. reset.css
Python files providing back- 2. screlling-nav.css
end services and Model . 3. style.css
generation. 3. 38 .)
1. jgquery.tagcloud.js
i 2. modules
1. search
1. bmaearch. js
4, geripts
/ 1. index.is
1. read.py 2. jguerymin.js
Z. sc:apc:.py"", 3 views

3. server.py 1. main.ejs
T | —F 4 server.ijs

Calls main.ejs and display
main html page

FIG: Package and file information

REFERENCES:

1. http://scikit-learn.org/stable/modules/clustering.html#clustering
http://scikit-learn.org/stable/modules/clustering.html#k-means
https://en.wikipedia.org/wiki/Okapi BM25
https://xapian.org/docs/bm25.html
https://nlp.stanford.edu/IR-book/html/htmledition/okapi-bm25-a-non-binary-model-
1.html
6. http://opensourceconnections.com/blog/2015/10/16/bm25-the-next-generation-of-

lucene-relevation/

7. http://scikit-learn.org/stable/auto _examples/text/document clustering.html
8. https://www.burakkanber.com/blog/machine-learning-in-other-languages-

introduction/

9. http://brandonrose.org/clustering

e wN

http://scikit-learn.org/stable/modules/clustering.html#clustering
http://scikit-learn.org/stable/modules/clustering.html#k-means
https://en.wikipedia.org/wiki/Okapi_BM25
https://xapian.org/docs/bm25.html
https://nlp.stanford.edu/IR-book/html/htmledition/okapi-bm25-a-non-binary-model-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/okapi-bm25-a-non-binary-model-1.html
http://opensourceconnections.com/blog/2015/10/16/bm25-the-next-generation-of-lucene-relevation/
http://opensourceconnections.com/blog/2015/10/16/bm25-the-next-generation-of-lucene-relevation/
http://scikit-learn.org/stable/auto_examples/text/document_clustering.html
https://www.burakkanber.com/blog/machine-learning-in-other-languages-introduction/
https://www.burakkanber.com/blog/machine-learning-in-other-languages-introduction/
http://brandonrose.org/clustering

